Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Rep ; 14(1): 8393, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600134

Identifying factors linked to autism traits in the general population may improve our understanding of the mechanisms underlying divergent neurodevelopment. In this study we assess whether factors increasing the likelihood of childhood autism are related to early autistic trait emergence, or if other exposures are more important. We used data from 536 toddlers from London (UK), collected at birth (gestational age at birth, sex, maternal body mass index, age, parental education, parental language, parental history of neurodevelopmental conditions) and at 18 months (parents cohabiting, measures of socio-economic deprivation, measures of maternal parenting style, and a measure of maternal depression). Autism traits were assessed using the Quantitative Checklist for Autism in Toddlers (Q-CHAT) at 18 months. A multivariable model explained 20% of Q-CHAT variance, with four individually significant variables (two measures of parenting style and two measures of socio-economic deprivation). In order to address variable collinearity we used principal component analysis, finding that a component which was positively correlated with Q-CHAT was also correlated to measures of parenting style and socio-economic deprivation. Our results show that parenting style and socio-economic deprivation correlate with the emergence of autism traits at age 18 months as measured with the Q-CHAT in a community sample.


Autism Spectrum Disorder , Autistic Disorder , Infant, Newborn , Humans , Child, Preschool , Infant , Autistic Disorder/epidemiology , Parents , Educational Status , Parenting , Family Characteristics , Autism Spectrum Disorder/epidemiology
2.
Nat Commun ; 15(1): 16, 2024 02 08.
Article En | MEDLINE | ID: mdl-38331941

Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.


Autistic Disorder , Infant, Premature , Child, Preschool , Infant , Adult , Humans , Infant, Newborn , Brain/pathology , Brain Mapping , Magnetic Resonance Imaging
3.
Hum Brain Mapp ; 43(5): 1577-1589, 2022 04 01.
Article En | MEDLINE | ID: mdl-34897872

Infants born in early term (37-38 weeks gestation) experience slower neurodevelopment than those born at full term (40-41 weeks gestation). While this could be due to higher perinatal morbidity, gestational age at birth may also have a direct effect on the brain. Here we characterise brain volume and white matter correlates of gestational age at birth in healthy term-born neonates and their relationship to later neurodevelopmental outcome using T2 and diffusion weighted MRI acquired in the neonatal period from a cohort (n = 454) of healthy babies born at term age (>37 weeks gestation) and scanned between 1 and 41 days after birth. Images were analysed using tensor-based morphometry and tract-based spatial statistics. Neurodevelopment was assessed at age 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Infants born earlier had higher relative ventricular volume and lower relative brain volume in the deep grey matter, cerebellum and brainstem. Earlier birth was also associated with lower fractional anisotropy, higher mean, axial, and radial diffusivity in major white matter tracts. Gestational age at birth was positively associated with all Bayley-III subscales at age 18 months. Regression models predicting outcome from gestational age at birth were significantly improved after adding neuroimaging features associated with gestational age at birth. This work adds to the body of evidence of the impact of early term birth and highlights the importance of considering the effect of gestational age at birth in future neuroimaging studies including term-born babies.


Diffusion Tensor Imaging , White Matter , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Female , Gestational Age , Humans , Infant , Infant, Newborn , Infant, Premature , Pregnancy , White Matter/diagnostic imaging
4.
Epilepsia ; 60(9): 1949-1959, 2019 09.
Article En | MEDLINE | ID: mdl-31392717

OBJECTIVE: Laser interstitial thermal therapy (LITT) is a novel minimally invasive alternative to open mesial temporal resection in drug-resistant mesial temporal lobe epilepsy (MTLE). The safety and efficacy of the procedure are dependent on the preplanned trajectory and the extent of the planned ablation achieved. Ablation of the mesial hippocampal head has been suggested to be an independent predictor of seizure freedom, whereas sparing of collateral structures is thought to result in improved neuropsychological outcomes. We aim to validate an automated trajectory planning platform against manually planned trajectories to objectively standardize the process. METHODS: Using the EpiNav platform, we compare automated trajectory planning parameters derived from expert opinion and machine learning to undertake a multicenter validation against manually planned and implemented trajectories in 95 patients with MTLE. We estimate ablation volumes of regions of interest and quantify the size of the avascular corridor through the use of a risk score as a marker of safety. We also undertake blinded external expert feasibility and preference ratings. RESULTS: Automated trajectory planning employs complex algorithms to maximize ablation of the mesial hippocampal head and amygdala, while sparing the parahippocampal gyrus. Automated trajectories resulted in significantly lower calculated risk scores and greater amygdala ablation percentage, whereas overall hippocampal ablation percentage did not differ significantly. In addition, estimated damage to collateral structures was reduced. Blinded external expert raters were significantly more likely to prefer automated to manually planned trajectories. SIGNIFICANCE: Retrospective studies of automated trajectory planning show much promise in improving safety parameters and ablation volumes during LITT for MTLE. Multicenter validation provides evidence that the algorithm is robust, and blinded external expert ratings indicate that the trajectories are clinically feasible. Prospective validation studies are now required to determine if automated trajectories translate into improved seizure freedom rates and reduced neuropsychological deficits.


Amygdala/surgery , Drug Resistant Epilepsy/surgery , Epilepsy, Temporal Lobe/surgery , Hippocampus/surgery , Laser Therapy/methods , Neurosurgical Procedures/methods , Humans , Machine Learning
5.
Neurotherapeutics ; 16(1): 182-191, 2019 01.
Article En | MEDLINE | ID: mdl-30520003

Laser interstitial thermal therapy (LITT) is an alternative to open surgery for drug-resistant focal mesial temporal lobe epilepsy (MTLE). Studies suggest maximal ablation of the mesial hippocampal head and amygdalohippocampal complex (AHC) improves seizure freedom rates while better neuropsychological outcomes are associated with sparing of the parahippocampal gyrus (PHG). Optimal trajectories avoid sulci and CSF cavities and maximize distance from vasculature. Computer-assisted planning (CAP) improves these metrics, but the combination of entry and target zones has yet to be determined to maximize ablation of the AHC while sparing the PHG. We apply a machine learning approach to predict entry and target parameters and utilize these for CAP. Ten patients with hippocampal sclerosis were identified from a prospectively managed database. CAP LITT trajectories were generated using entry regions that include the inferior occipital, middle occipital, inferior temporal, and middle temporal gyri. Target points were varied by sequential AHC erosions and transformations of the centroid of the amygdala. A total of 7600 trajectories were generated, and ablation volumes of the AHC and PHG were calculated. Two machine learning approaches (random forest and linear regression) were investigated to predict composite ablation scores and determine entry and target point combinations that maximize ablation of the AHC while sparing the PHG. Random forest and linear regression predictions had a high correlation with the calculated values in the test set (ρ = 0.7) for both methods. Maximal composite ablation scores were associated with entry points around the junction of the inferior occipital, middle occipital, and middle temporal gyri. The optimal target point was the anteromesial amygdala. These parameters were then used with CAP to generate clinically feasible trajectories that optimize safety metrics. Machine learning techniques accurately predict composite ablation score. Prospective studies are required to determine if this improves seizure-free outcome while reducing neuropsychological morbidity following LITT for MTLE.


Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/therapy , Laser Therapy/methods , Drug Resistant Epilepsy/therapy , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Surgery, Computer-Assisted
6.
Clin Neurophysiol ; 128(7): 1246-1254, 2017 07.
Article En | MEDLINE | ID: mdl-28531810

OBJECTIVE: To validate the application of an automated neuronal spike classification algorithm, Wave_clus (WC), on interictal epileptiform discharges (IED) obtained from human intracranial EEG (icEEG) data. METHOD: Five 10-min segments of icEEG recorded in 5 patients were used. WC and three expert EEG reviewers independently classified one hundred IED events into IED classes or non-IEDs. First, we determined whether WC-human agreement variability falls within inter-reviewer agreement variability by calculating the variation of information for each classifier pair and quantifying the overlap between all WC-reviewer and all reviewer-reviewer pairs. Second, we compared WC and EEG reviewers' spike identification and individual spike class labels visually and quantitatively. RESULTS: The overlap between all WC-human pairs and all human pairs was >80% for 3/5 patients and >58% for the other 2 patients demonstrating WC falling within inter-human variation. The average sensitivity of spike marking for WC was 91% and >87% for all three EEG reviewers. Finally, there was a strong visual and quantitative similarity between WC and EEG reviewers. CONCLUSIONS: WC performance is indistinguishable to that of EEG reviewers' suggesting it could be a valid clinical tool for the assessment of IEDs. SIGNIFICANCE: WC can be used to provide quantitative analysis of epileptic spikes.


Action Potentials/physiology , Electroencephalography/classification , Electroencephalography/standards , Epilepsy/classification , Epilepsy/physiopathology , Adult , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Magnetic Resonance Imaging/classification , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Male , Random Allocation , Young Adult
...